How to Determine Which Hypothesis Test or Confidence Interval to Use (chapters 8 & 9) (given α level like .01, .05, etc.)

What you are given in problem Test name		Sec	Classical Method Critical value	p-value Method Test Name
one mean population standard deviation (δ) sample size (n) pop mean or standard for comparison, α level	HT for one mean, δ known	8.2	z value (handout)	z-test
one mean sample standard deviation (s) sample size (n) pop mean or standard for comparison, α level	HT for one mean, δ unknown	8.3	t value (book)	t-test
number (x) out of total sample (n) OR percent (p) pop proportion or percent for comparison, α level	HT for one proportion	8.4	z value (handout)	1-prop z test
two means two pop standard deviations , two sample sizes α level	HT for two means, δ known	9.1	z value (handout)	2 sample z-test
two means two sample standard deviations , two sample sizes α level	HT for two means, δ unknown	9.2	t value (book)	2 sample t-test
matched pairs of data (e.g. before/after, etc.) α level	HT for dependent or paired samples	9.3	t value (book)	t-test
two sets of values for proportions: numbers (x_1, x_2) out of total samples (n_1, n_2) OR percents (p_1, p_2) α level	HT for two proportions	9.4	z value (handout)	2-prop z test

CONFIDENCE INTERVALS (chapters 7 & 9)

(given level of confidence or significance like .95, .99, etc.)

What you are given in problem	Test name		Use z-value or t-value?
one mean population standard deviation (δ) sample size (n)	CI around mean, δ known	7.1	z value (handout)
one mean sample standard deviation (s) sample size (n)	CI around mean, δ unknown	7.2	t value (book)
number (x) out of total sample (n) OR percent (p)	CI around proportion		z value (handout)
two means two pop standard deviations , two sample sizes	CI around difference of two means, δ known	9.1	z value (handout)
two means two sample standard deviations , two sample sizes	CI around difference of two means, δ unknown	9.2	t value (book)
matched pairs of data (e.g. before/after, etc.)	CI around difference of two means, dependent or paired samples	9.3	t value (book)
two sets of values for proportions: numbers (x_1, x_2) out of total samples (n_1, n_2) OR percents (p_1, p_2)	CI around difference of two proportions	9.4	z value (handout)

SAMPLE SIZES (chapter 7)

What you are given in problem	Formula name	Notes	
α level, standard deviation (δ or s)	Sample size estimation of mean	Round up to next integer	
error bound (± or "within")		Use Z score from handout	
α level, error bound (± or "within")	Sample size estimation of proportion	ion Round up to next integer	
proportion may or may not be given		Use Z score from handout	
		If no proportion given use	